Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results

Open Problems References

Approximate Polytope Membership Queries and Applications

Guilherme D. da Fonseca

Aix-Marseille Université LIS

GT-GDMM - November 12, 2019

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

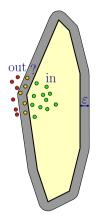
Applications ANN Reduction Tradeoff Kernel History

- Construction
- Diameter

Conclusions Results Open Problems References

Fundamental problem

- Exact solutions are inefficient
- Gives the best known bounds for:
 - Approximate nearest neighbor searching
 - ε -kernel construction
 - Diameter approximation
 - Approximate bichromatic closest pair
 - Minimum Euclidean bottleneck tree approximation



Introduction

Motivation Definition Previous

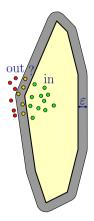
Data Struct.

- Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis
- Applications ANN Reduction Tradeoff Kernel History
- Construction
- Diameter

Conclusions Results Open Problems References

Fundamental problem

- Exact solutions are inefficient
- Gives the best known bounds for:
 - Approximate nearest neighbor searching
 - ε -kernel construction
 - Diameter approximation
 - Approximate bichromatic closest pair
 - Minimum Euclidean bottleneck tree approximation



Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

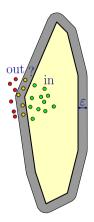
Applications ANN Reduction Tradeoff Kernel

- History Construction
- Diameter

Conclusions Results Open Problems References

Fundamental problem

- Exact solutions are inefficient
- Gives the best known bounds for:
 - Approximate nearest neighbor searching
 - ε -kernel construction
 - Diameter approximation
 - Approximate bichromatic closest pair
 - Minimum Euclidean bottleneck tree approximation



Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

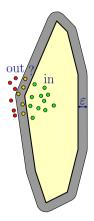
Applications ANN Reduction Tradeoff

- History
- Construction
- Diameter

Conclusions Results Open Problems References

Fundamental problem

- Exact solutions are inefficient
- Gives the best known bounds for:
 - Approximate nearest neighbor searching
 - ε -kernel construction
 - Diameter approximation
 - Approximate bichromatic closest pair
 - Minimum Euclidean bottleneck tree approximation



Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

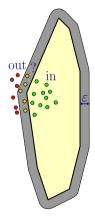
Applications ANN Reduction Tradeoff Kernel History

- Construction
- Diameter

Conclusions Results Open Problems References

Fundamental problem

- Exact solutions are inefficient
- Gives the best known bounds for:
 - Approximate nearest neighbor searching
 - ε -kernel construction
 - Diameter approximation
 - Approximate bichromatic closest pair
 - Minimum Euclidean bottleneck tree approximation



Exact Polytope Membership Queries

Introduction Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions

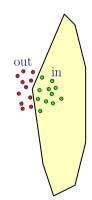
Results Open Problems References

Exact Polytope Membership Queries

Given a polytope P in d-dimensional space, preprocess P to answer membership queries:

Given a point q, is $q \in P$?

- Assume that dimension d is a constant and
 - P is given as intersection of n halfspaces
- Dual of halfspace emptiness searching
- For $d \le 3$ Query time: $O(\log n)$ Storage: O(n)
- For $d \ge 4$ Query time: $O(\log n)$ Storage: $O(n^{\lfloor d/2 \rfloor})$



Approximate Polytope Membership Queries

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

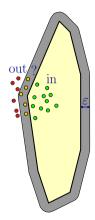
Conclusions Results Open Problems References

Approximate Version

- An approximation parameter $\varepsilon > 0$ is given
- Assume the polytope has diameter 1
- If the query point's distance from P:
 - 0: answer must be inside
 - $\geq \varepsilon$: answer must be outside
 - $\blacksquare>0$ and $<\varepsilon:$ either answer is acceptable

Time-efficient

- Optimal query time: $O(\log \frac{1}{\varepsilon})$
- Space-efficient
 - Optimal storage: $O(1/\varepsilon^{(d-1)/2})$



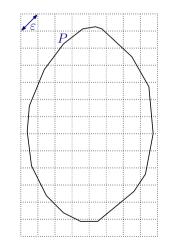
Time Efficient Solution [BFP82]

Data Struct

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results Open Problems

References



1 Create a grid with cells of size ε

- 2 For each column, store the topmost and bottommost cells intersecting P
- 3 Query processing:
 - Locate the column that contains q
 - Compare q with the two extreme values

Time Efficient Solution [BFP82]

- $O(1/\varepsilon^{d-1})$ columns
- Query time: $O(\log \frac{1}{\varepsilon})$
- Storage: $O(1/\varepsilon^{d-1})$
- $\leftarrow \mathsf{optimal}$
- $\leftarrow \mathsf{not} \; \mathsf{optimal}$

Time Efficient Solution [BFP82]

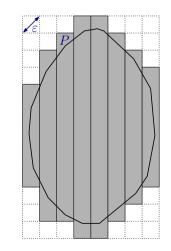
Introduction Motivation Definition

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results Open Problems

References



- **1** Create a grid with cells of size ε
- 2 For each column, store the topmost and bottommost cells intersecting *P*

3 Query processing:

- Locate the column that contains q
- Compare q with the two extreme values

Time Efficient Solution [BFP82]

- $O(1/\varepsilon^{d-1})$ columns
- Query time: $O(\log \frac{1}{\varepsilon})$
- Storage: $O(1/\varepsilon^{d-1})$
- $\leftarrow \mathsf{optimal}$
- $\leftarrow \mathsf{not} \; \mathsf{optimal}$

Time Efficient Solution [BFP82]

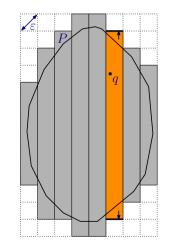
Introduction Motivation Definition

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results

References



- **1** Create a grid with cells of size ε
- 2 For each column, store the topmost and bottommost cells intersecting *P*
- 3 Query processing:
 - Locate the column that contains q
 - Compare q with the two extreme values

Time Efficient Solution [BFP82]

- $O(1/\varepsilon^{d-1})$ columns
- Query time: $O(\log \frac{1}{\varepsilon})$
- Storage: $O(1/\varepsilon^{d-1})$
- $\leftarrow \mathsf{optimal}$
- $\leftarrow \mathsf{not} \mathsf{ optimal}$

Introduction Motivation Definition

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions

Results Open Problems References

- Ball B of radius f
- 2 $\sqrt{\varepsilon}$ -net N on B
- 3 Closest point on K for each point in N
- $\blacksquare P$ bounded by tangent hyperplanes
- 5 Query processing:
 - Inspect all $O(1/\varepsilon^{\frac{d-1}{2}})$ hyperplanes

Space Efficient Solution [Dud74]

- Query time: $O(1/\varepsilon^{\frac{d-1}{2}}) \leftarrow \text{not optimal}$
- Storage: $O(1/\varepsilon^{\frac{d-1}{2}}) \leftarrow \text{optimal}$

K

Introduction Motivation Definition

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions

Results Open Problems References

1 Ball B of radius 2

2 $\sqrt{arepsilon}$ -net N on B

- **3** Closest point on K for each point in N
- $\blacksquare P$ bounded by tangent hyperplanes
- **5** Query processing:
 - Inspect all $O(1/\varepsilon^{\frac{d-1}{2}})$ hyperplanes

Space Efficient Solution [Dud74]

- Query time: $O(1/\varepsilon^{\frac{d-1}{2}})$
- Storage: $O(1/\varepsilon^{\frac{d-1}{2}}) \leftarrow \text{optimal}$

 \leftarrow not optimal

K

B

Introduction Motivation Definition

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions

Results Open Problems References

1 Ball B of radius 2

- 2 $\sqrt{\varepsilon}$ -net N on B
 - Closest point on K for each point in I
 - $\blacksquare P$ bounded by tangent hyperplanes
- **5** Query processing:
 - Inspect all $O(1/\varepsilon^{\frac{d-1}{2}})$ hyperplanes

Space Efficient Solution [Dud74]

- Query time: $O(1/\varepsilon^{\frac{d-1}{2}})$
- Storage: $O(1/\varepsilon^{\frac{d-1}{2}}) \leftarrow \text{optimal}$

 \leftarrow not optimal

Introduction Motivation Definition

Data Struct

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions

Results Open Problems References

- **1** Ball B of radius 2
- 2 $\sqrt{\varepsilon}$ -net N on B
- **3** Closest point on K for each point in N
 - $\blacksquare P$ bounded by tangent hyperplanes
- **5** Query processing:
 - Inspect all $O(1/\varepsilon^{\frac{d-1}{2}})$ hyperplanes

Space Efficient Solution [Dud74]

- Query time: $O(1/\varepsilon^{\frac{d-1}{2}})$
- Storage: $O(1/\varepsilon^{\frac{d-1}{2}}) \leftarrow \text{optimal}$

 \leftarrow not optimal

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

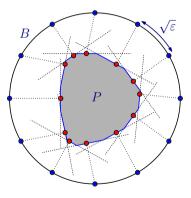
Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions

Results Open Problems References

- **1** Ball B of radius 2
- 2 $\sqrt{\varepsilon}$ -net N on B
- **3** Closest point on K for each point in N
- 4 P bounded by tangent hyperplanes
- 5 Query processing:
 - Inspect all $O(1/\varepsilon^{\frac{d-1}{2}})$ hyperplanes

Space Efficient Solution [Dud74]

- Query time: $O(1/\varepsilon^{\frac{d-1}{2}}) \leftarrow \text{not optimal}$
- Storage: $O(1/\varepsilon^{\frac{d-1}{2}}) \leftarrow \text{optimal}$



Introduction Motivation Definition

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

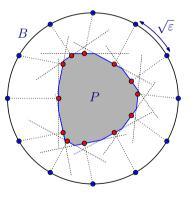
Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions

CONCLUSIONS Results Open Problems References

- **1** Ball B of radius 2
- 2 $\sqrt{\varepsilon}$ -net N on B
- **3** Closest point on K for each point in N
- 4 P bounded by tangent hyperplanes
- **5** Query processing:
 - Inspect all $O(1/\varepsilon^{\frac{d-1}{2}})$ hyperplanes

Space Efficient Solution [Dud74]

- Query time: $O(1/\varepsilon^{\frac{d-1}{2}}) \leftarrow \text{not optimal}$
- Storage: $O(1/\varepsilon^{\frac{d-1}{2}}) \leftarrow \text{optimal}$



Introduction Motivation Definition

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy

Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

A Simple Tradeoff

1 Generate a grid of size $r \in [\varepsilon, 1]$

2 Preprocessing: For each cell Q intersecting P's boundary:

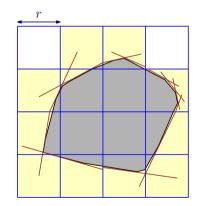
- $\hfill\blacksquare$ Apply Dudley to $P\cap Q$
- $O((r/\varepsilon)^{(d-1)/2})$ halfspaces per cell

3 Query Processing:

- Find the cell containing q
- Check whether q lies within every halfspace for this cell

Simple Tradeoff

- Query time: $O((r/\varepsilon)^{(d-1)/2})$
- Storage: $O(1/(r\varepsilon)^{(d-1)/2})$



Introduction Motivation Definition

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff

- Macbeath Hierarchy
- Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

A Simple Tradeoff

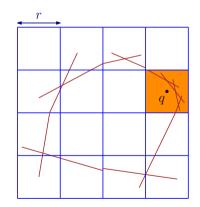
1 Generate a grid of size $r \in [\varepsilon, 1]$

2 Preprocessing: For each cell Q intersecting P's boundary:

- $\hfill\blacksquare$ Apply Dudley to $P\cap Q$
- $O((r/\varepsilon)^{(d-1)/2})$ halfspaces per cell
- **3** Query Processing:
 - Find the cell containing q
 - Check whether q lies within every halfspace for this cell

Simple Tradeoff

- Query time: $O((r/\varepsilon)^{(d-1)/2})$
- Storage: $O(1/(r\varepsilon)^{(d-1)/2})$

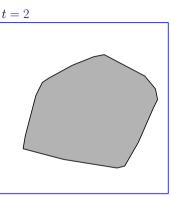


Data Struct

Split-Reduce Upper Bound Lower Bound Tradeoff Macheath Hierarchy Queries Analysis

Applications ANN Reduction Tradeof Kernel History Construction Diameter Conclusions

Results Open Problems References



- Query time: O(t)
- Storage: ???

- Input: P, ε, t
- $\square Q \leftarrow$ unit hypercube
- Split-Reduce(Q)

- Find an ε -approximation of $Q \cap P$
- If at most t facets, then
- Otherwise, subdivide *Q* and recurse

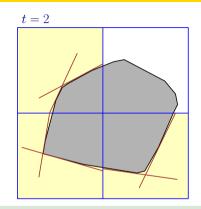
Introduction Motivation Definition

Previous Data Struct

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results Ooen Problems

References



radeoff

- **Query time:** O(t)
- Storage: ???

- Input: P, ε, t
- $Q \leftarrow$ unit hypercube
- Split-Reduce(Q)

Split-Reduce(Q)

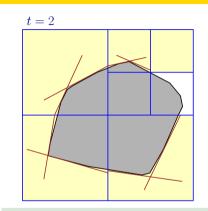
- Find an ε -approximation of $Q \cap P$
- If at most t facets, then Q stores them
- \blacksquare Otherwise, subdivide Q and recurse

Introduction Motivation Definition Previous

Data Struct

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results



Fradeoff

- Query time: O(t)
- Storage: ???

- Input: P, ε, t
- $Q \leftarrow$ unit hypercube
- Split-Reduce(Q)

Split-Reduce(Q)

- Find an ε -approximation of $Q \cap P$
- If at most t facets, then Q stores them
- Otherwise, subdivide Q and recurse

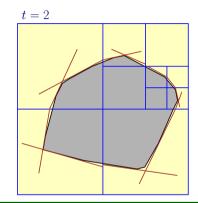
Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions

Results Open Problems References



Tradeoff

- Query time: O(t)
- Storage: ???

- Input: P, ε, t
- $Q \leftarrow$ unit hypercube
- Split-Reduce(Q)

Split-Reduce(Q)

- Find an ε -approximation of $Q \cap P$
- If at most t facets, then Q stores them
- Otherwise, subdivide Q and recurse

Analysis of Split-Reduce (easy case)

Introduction Motivation Definition Previous

Data Struct.

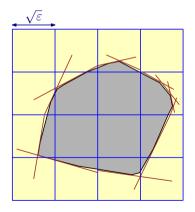
Split-Reduce

- Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis
- Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

• Easy analysis: $t = 1/\varepsilon^{(d-1)/4}$

- By Dudley in the cell, if diameter $\leq \sqrt{\varepsilon}$, then $O(1/\varepsilon^{(d-1)/4})$ halfspaces suffice
- Cells of size $\sqrt{\varepsilon}$ are not subdivided
- \blacksquare Each Dudley halfspace is only useful within a radius of $\sqrt{\varepsilon}$
- \blacksquare It hits O(1) cells of size $\sqrt{\varepsilon}$
- Total number of halfspaces: $O(1/\varepsilon^{(d-1)/2})$



Analysis of Split-Reduce (easy case)

Introduction Motivation Definition Previous

Data Struct.

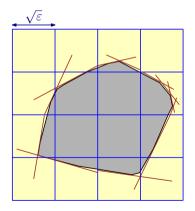
Split-Reduce

Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

- Easy analysis: $t = 1/\varepsilon^{(d-1)/4}$
- By Dudley in the cell, if diameter $\leq \sqrt{\varepsilon}$, then $O(1/\varepsilon^{(d-1)/4})$ halfspaces suffice
- Cells of size $\sqrt{\varepsilon}$ are not subdivided
- \blacksquare Each Dudley halfspace is only useful within a radius of $\sqrt{\varepsilon}$
- \blacksquare It hits O(1) cells of size $\sqrt{\varepsilon}$
- Total number of halfspaces: $O(1/\varepsilon^{(d-1)/2})$



Analysis of Split-Reduce (easy case)

Introduction Motivation Definition Previous

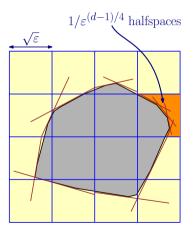
Data Struct.

- Split-Reduce
- Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

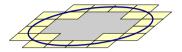
Conclusions Results Open Problems References

- Easy analysis: $t = 1/\varepsilon^{(d-1)/4}$
- By Dudley in the cell, if diameter $\leq \sqrt{\varepsilon}$, then $O(1/\varepsilon^{(d-1)/4})$ halfspaces suffice
- Cells of size $\sqrt{\varepsilon}$ are not subdivided
- \blacksquare Each Dudley halfspace is only useful within a radius of $\sqrt{\varepsilon}$
- \blacksquare It hits O(1) cells of size $\sqrt{\varepsilon}$
- Total number of halfspaces: $O(1/\varepsilon^{(d-1)/2})$



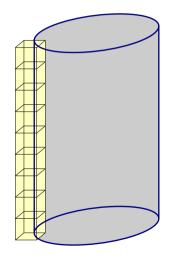
- Introduction Motivation Definition Previous
- Data Struct. Split-Reduce Upper Bound
- Tradeoff Macbeath Hierarchy Queries Analysis
- Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results
- Open Problems References

- Place a small enough ball in \mathbb{R}^k
- High curvature forces small cells
- No problem: small diameter
- Extrude the ball in d k dimensions
- Quadtree cells are hypercubes
- Too many cells!
- What if cells are not hypercubes?



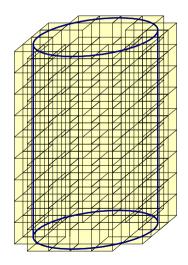
- Introduction Motivation Definition Previous
- Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy
- Hierarchy Queries Analysis
- Applications ANN Reduction Tradeoff Kernel History Construction Diameter
- Conclusions Results Open Problems References

- Place a small enough ball in \mathbb{R}^k
- High curvature forces small cells
- No problem: small diameter
- **Extrude** the ball in d k dimensions
- Quadtree cells are hypercubes
- Too many cells!
- What if cells are not hypercubes?



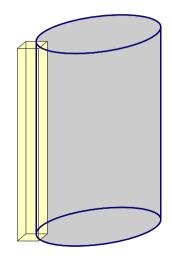
- Introduction Motivation Definition Previous
- Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath
- Hierarchy Queries Analysis
- Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions
- Results Open Problems References

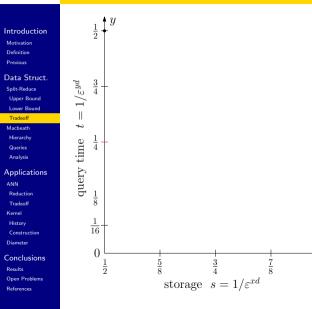
- Place a small enough ball in \mathbb{R}^k
- High curvature forces small cells
- No problem: small diameter
- **Extrude** the ball in d k dimensions
- Quadtree cells are hypercubes
- Too many cells!
- What if cells are not hypercubes?



- Introduction Motivation Definition Previous
- Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath
- Hierarchy Queries Analysis
- Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions
- Results Open Problems References

- Place a small enough ball in \mathbb{R}^k
- High curvature forces small cells
- No problem: small diameter
- Extrude the ball in d k dimensions
- Quadtree cells are hypercubes
- Too many cells!
- What if cells are not hypercubes?



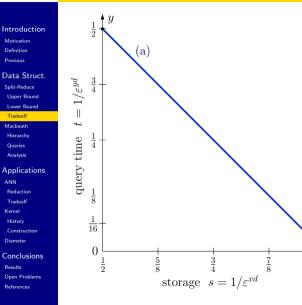


- Tight analysis is an open problem
- Best analysis is very complex
- a) Simple tradeoff

x

1

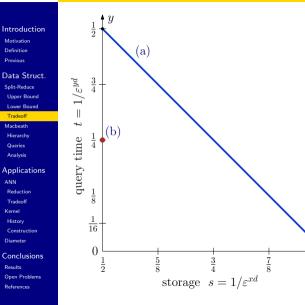
- (b) Easy $t = 1/arepsilon^{(d-1)/4}$ case
- (c) Best Split-Reduce upper bound
- d) Lower bound to Split-Reduce
- e) Next data structure: uses Macbeath regions!



- Tight analysis is an open problem
- Best analysis is very complex
- (a) Simple tradeoff

x

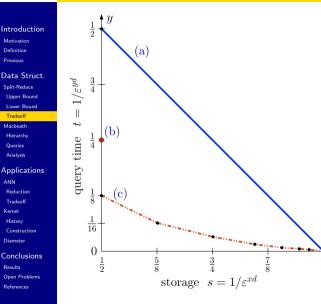
- b) Easy $t = 1/\varepsilon^{(d-1)/4}$ case
- c) Best Split-Reduce upper bound
- d) Lower bound to Split-Reduce
- e) Next data structure: uses Macbeath regions!



- Tight analysis is an open problem
- Best analysis is very complex
- (a) Simple tradeoff

x

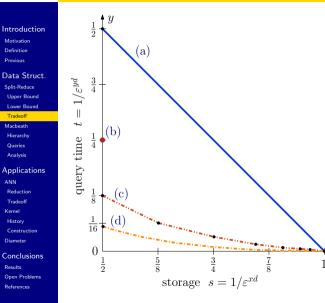
- (b) Easy $t = 1/\varepsilon^{(d-1)/4}$ case
 - ${
 m c})$ Best Split-Reduce upper bound
 - d) Lower bound to Split-Reduce
 - Next data structure: uses Macbeath regions!



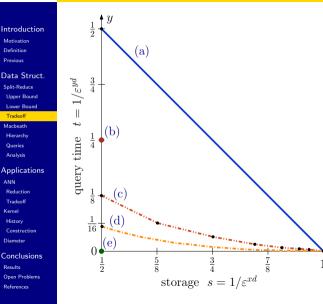
- Tight analysis is an open problem
- Best analysis is very complex
- (a) Simple tradeoff
- (b) Easy $t = 1/\varepsilon^{(d-1)/4}$ case
- $\left(c \right)$ Best Split-Reduce upper bound

d) Lower bound to Split-Reduce

 Next data structure: uses Macbeath regions!



- Tight analysis is an open problem
- Best analysis is very complex
- (a) Simple tradeoff
- (b) Easy $t = 1/\varepsilon^{(d-1)/4}$ case
- (c) Best Split-Reduce upper bound
- (d) Lower bound to Split-Reduce
 - Next data structure: uses Macbeath regions!

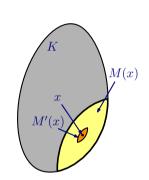


- Tight analysis is an open problem
- Best analysis is very complex
- (a) Simple tradeoff
- (b) Easy $t = 1/\varepsilon^{(d-1)/4}$ case
- (c) Best Split-Reduce upper bound
- (d) Lower bound to Split-Reduce
- (e) Next data structure: uses Macbeath regions!

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy

Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results



Given a convex body K, $x \in K$, and $\lambda > 0$:

$$\bullet \ M^{\lambda}(x) = x + \lambda((K - x) \cap (x - K))$$

 M(x) = M¹(x): intersection of K and K reflected around x

• $M'(x) = M^{1/5}(x)$

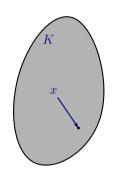
Properties

 $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$ $y \in M'(x) \Rightarrow \delta(y) = \Theta(\delta(x))$

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analvsis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results Ooen Problems

References



Given a convex body K, $x \in K$, and $\lambda > 0$:

$$\bullet \ M^{\lambda}(x) = x + \lambda((K - x) \cap (x - K))$$

 M(x) = M¹(x): intersection of K and K reflected around x

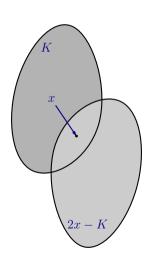
• $M'(x) = M^{1/5}(x)$

Properties

 $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$ $y \in M'(x) \Rightarrow \delta(y) = \Theta(\delta(x))$

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results Open Problems References



Given a convex body K, $x \in K$, and $\lambda > 0$:

$$\bullet \ M^{\lambda}(x) = x + \lambda((K - x) \cap (x - K))$$

 M(x) = M¹(x): intersection of K and K reflected around x

• $M'(x) = M^{1/5}(x)$

Properties

 $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$ $y \in M'(x) \Rightarrow \delta(y) = \Theta(\delta(x))$

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results Open Problems References



Given a convex body K, $x \in K$, and $\lambda > 0$:

$$\bullet \ M^{\lambda}(x) = x + \lambda((K - x) \cap (x - K))$$

 M(x) = M¹(x): intersection of K and K reflected around x

• $M'(x) = M^{1/5}(x)$

Properties

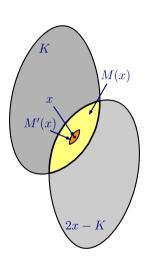
 $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$ $\psi \in M'(x) \Rightarrow \delta(y) = \Theta(\delta(x))$

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Ouncies

Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results Ooen Problems

References



Given a convex body K, $x \in K$, and $\lambda > 0$:

$$\bullet \ M^{\lambda}(x) = x + \lambda((K - x) \cap (x - K))$$

 M(x) = M¹(x): intersection of K and K reflected around x

• $M'(x) = M^{1/5}(x)$

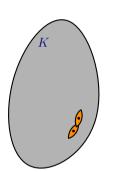
Properties

 $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$ $\psi \in M'(x) \Rightarrow \delta(y) = \Theta(\delta(x))$

Introduction Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analvsis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results



Given a convex body K, $x \in K$, and $\lambda > 0$:

$$\bullet \ M^{\lambda}(x) = x + \lambda((K - x) \cap (x - K))$$

 M(x) = M¹(x): intersection of K and K reflected around x

• $M'(x) = M^{1/5}(x)$

Properties

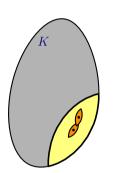
 $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$ $y \in M'(x) \Rightarrow \delta(y) = \Theta(\delta(x))$

Introduction Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analvsis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results

Open Problems References



Given a convex body K, $x \in K$, and $\lambda > 0$:

$$\bullet \ M^{\lambda}(x) = x + \lambda((K - x) \cap (x - K))$$

 M(x) = M¹(x): intersection of K and K reflected around x

• $M'(x) = M^{1/5}(x)$

Properties

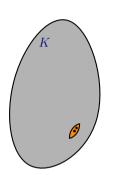
 $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$ $y \in M'(x) \Rightarrow \delta(y) = \Theta(\delta(x))$

Introduction Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analvsis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results

Open Problems References



Given a convex body K, $x \in K$, and $\lambda > 0$:

$$\bullet \ M^{\lambda}(x) = x + \lambda((K - x) \cap (x - K))$$

 M(x) = M¹(x): intersection of K and K reflected around x

• $M'(x) = M^{1/5}(x)$

Properties

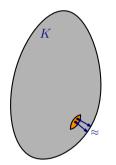
- $\bullet \ M'(x) \cap M'(y) \neq \emptyset \ \Rightarrow \ M'(x) \subseteq M(y)$
- $\bullet \ y \in M'(x) \ \Rightarrow \ \delta(y) = \Theta(\delta(x))$
- $\delta(x)$: distance from x to ∂K

Introduction Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analvsis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results

Open Problems References



Given a convex body K, $x \in K$, and $\lambda > 0$:

$$\bullet \ M^{\lambda}(x) = x + \lambda((K - x) \cap (x - K))$$

 M(x) = M¹(x): intersection of K and K reflected around x

• $M'(x) = M^{1/5}(x)$

Properties

- $\bullet \ M'(x) \cap M'(y) \neq \emptyset \ \Rightarrow \ M'(x) \subseteq M(y)$
- $\bullet \ y \in M'(x) \ \Rightarrow \ \delta(y) = \Theta(\delta(x))$
- $\delta(x)$: distance from x to ∂K

Macbeath Ellipsoids

Motivation Definition Previous

Split-Reduce Upper Bound

Lower Bound Tradeoff

Macbeath Hierarchy

Queries Analysis

ANN Reduction Tradeof

Kernel History

Results Open Problems References

Construction Diameter



John Ellipsoid [Joh48]

For every centrally symmetric convex body K in \mathbb{R}^d , there exist ellipsoids E_1, E_2 such that $E_1 \subseteq K \subseteq E_2$ and E_2 is a \sqrt{d} -scaling of E_1

- E(x): enclosed John ellipsoid of M'(x)
- $M^{\lambda}(x) \subseteq E(x) \subset M'(x)$ for $\lambda = 1/(5\sqrt{d})$

Macbeath Ellipsoids

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound

Lower Bound Tradeoff

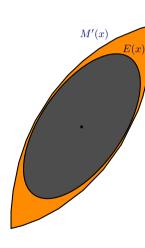
Macbeath Hierarchy

Queries Analysis Applications

> Reduction Tradeoff

Construction Diameter Conclusions Results Open Problems Beferences

Kernel History



John Ellipsoid [Joh48]

For every centrally symmetric convex body K in \mathbb{R}^d , there exist ellipsoids E_1, E_2 such that $E_1 \subseteq K \subseteq E_2$ and E_2 is a \sqrt{d} -scaling of E_1

Macbeath Ellipsoid

• E(x): enclosed John ellipsoid of M'(x)• $M^{\lambda}(x) \subseteq E(x) \subseteq M'(x)$ for $\lambda = 1/(5\sqrt{d})$

Macbeath Ellipsoids

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound

Lower Bound Tradeoff

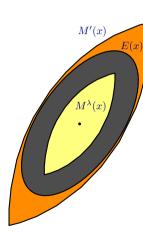
Macbeath Hierarchy

Queries Analysis Applications

> Reduction Tradeoff

Construction Diameter Conclusions Results Open Problems Beferences

Kernel History



John Ellipsoid [Joh48]

For every centrally symmetric convex body K in \mathbb{R}^d , there exist ellipsoids E_1, E_2 such that $E_1 \subseteq K \subseteq E_2$ and E_2 is a \sqrt{d} -scaling of E_1

Macbeath Ellipsoid

- E(x): enclosed John ellipsoid of M'(x)
- $M^{\lambda}(x) \subseteq E(x) \subseteq M'(x)$ for $\lambda = 1/(5\sqrt{d})$

Shadow of Macbeath Ellipsoids

History Construction Diameter Conclusions Results Open Problems References KEж 0

Shadow of ellipsoid E

Points $p \in K$ such that ray Op intersects E

- Reaches the boundary
- Directional width: similar to E

Covering with Macbeath Ellipsoids

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results Onen Problems

References

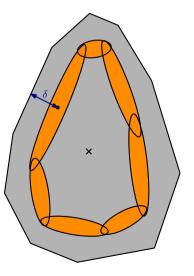
Covering (see [Bar07])

Given:

- *K*: convex body
- δ : small positive parameter

There exist ellipsoids $E(x_1), \ldots, E(x_k)$

- $\delta(x_1) = \dots = \delta(x_k) = \delta$
- Cover: Shadows cover the boundary • $k = O(1/\delta^{(d-1)/2})$ [AFM17c]



Covering with Macbeath Ellipsoids

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results

Open Problems References

Covering (see [Bar07])

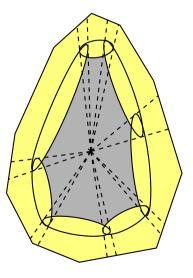
Given:

- *K*: convex body
- δ : small positive parameter

There exist ellipsoids $E(x_1), \ldots, E(x_k)$

- $\bullet \ \delta(x_1) = \dots = \delta(x_k) = \delta$
- Cover: Shadows cover the boundary

• $k = O(1/\delta^{(d-1)/2})$ [AFM17c]



Covering with Macbeath Ellipsoids

Introduction Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeof Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeof Kernel History Construction Diameter Results

Conclusions Open Problems References

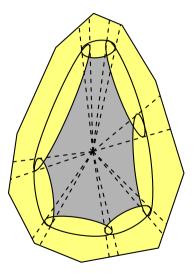
Covering (see [Bar07])

Given:

- \blacksquare K: convex body
- \bullet δ : small positive parameter

There exist ellipsoids $E(x_1), \ldots, E(x_k)$

- $\bullet \ \delta(x_1) = \dots = \delta(x_k) = \delta$
- Cover: Shadows cover the boundary • $k = O(1/\delta^{(d-1)/2})$ [AFM17c]



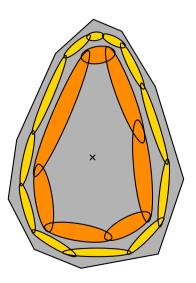
Hierarchy of Macbeath Ellipsoids [AFM17a]

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff

Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results

Open Problems References



Hierarchy

- Each level i a δ_i -covering
- $\ell = \Theta(\log \frac{1}{\varepsilon})$ levels

•
$$\delta_0 = \Theta(1), \ \delta_\ell = \Theta(\varepsilon)$$

$$\bullet \ \delta_{i+1} = \delta_i/2$$

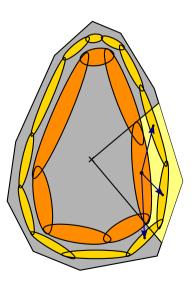
- E is parent of E' if
 - Levels are consecutive
 - Shadow of E intersects E'
- Each node has O(1) children

Hierarchy of Macbeath Ellipsoids [AFM17a]

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results



Hierarchy

- Each level i a δ_i -covering
- $\ell = \Theta(\log \frac{1}{\varepsilon})$ levels
- $\delta_0 = \Theta(1), \ \delta_\ell = \Theta(\varepsilon)$
- $\bullet \ \delta_{i+1} = \delta_i/2$
- E is parent of E' if
 - Levels are consecutive
 - Shadow of E intersects E'

• Each node has O(1) children

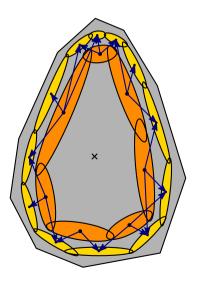
Hierarchy of Macbeath Ellipsoids [AFM17a]

Data Struct.

Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results

Open Problems References



Hierarchy

- Each level i a δ_i -covering
- $\ell = \Theta(\log \frac{1}{\varepsilon})$ levels
- $\delta_0 = \Theta(1), \ \delta_\ell = \Theta(\varepsilon)$
- $\bullet \ \delta_{i+1} = \delta_i/2$
- E is parent of E' if
 - Levels are consecutive
 - Shadow of E intersects E'
- Each node has O(1) children

Ray Shooting from the Origin

Introduction Motivation Definition Previous

Data Struct

- Split-Reduce Upper Bound
- Lower Bound
- Tradeof
- Macheath
- Hierarchy
- Queries Analysis

Applications ANN Reduction Tradeof Kornol History Construction Diameter Conclusions Populte

Onen Problems References

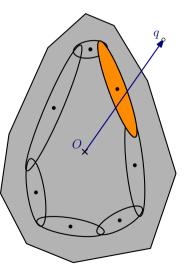
Ray Shooting from the Origin (generalizes polytope membership)

Preprocess:

- *K*: convex body
- \bullet ε : small positive parameter

Query:

- Oq: ray from the origin towards q Query algorithm:
 - Find an ellipsoid intersecting Oq at level 0
 - Repeat among children at next level
 - Stop at leaf node
 - Leaf ellipsoid ε -approximates boundary



Ray Shooting from the Origin

Introduction Motivation Definition Previous

Data Struct.

- Split-Reduce Upper Bound
- Lower Bound
- Macbeath
- Hierarchy
- Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results Open Problems

References

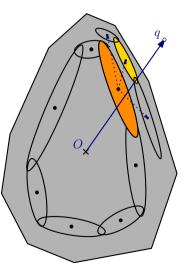
Ray Shooting from the Origin (generalizes polytope membership)

Preprocess:

- *K*: convex body
- ε : small positive parameter

Query:

- Oq: ray from the origin towards q
 Query algorithm:
 - Find an ellipsoid intersecting Oq at level 0
 - Repeat among children at next level
 - Stop at leaf node
 - Leaf ellipsoid ε -approximates boundary



Ray Shooting from the Origin

Introduction Motivation Definition Previous

Data Struct.

- Split-Reduce Upper Bound
- Lower Bound
- Macbeath
- Hierarchy
- Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results

Results Open Problems References

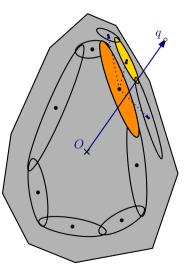
Ray Shooting from the Origin (generalizes polytope membership)

Preprocess:

- *K*: convex body
- ε : small positive parameter

Query:

- Oq: ray from the origin towards q
 Query algorithm:
 - Find an ellipsoid intersecting Oq at level 0
 - Repeat among children at next level
 - Stop at leaf node
 - Leaf ellipsoid ε -approximates boundary



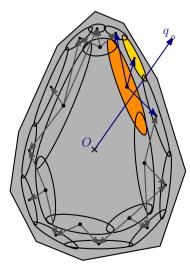
Analysis

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kemel History Construction Diameter Conclusions Results Open Problems References



- Out-degree: O(1)
- Query time per level: O(1)
- Number of levels: $O(\log \frac{1}{\varepsilon})$

Query time

• $O(\log \frac{1}{\varepsilon})$

\leftarrow optimal

- Storage for bottom level: $O(1/\varepsilon^{(d-1)/2})$
- Geometric progression of storage per level

Storage

 $\bullet O(1/\varepsilon^{(d-1)/2}) \quad \leftarrow \text{optimal}$

Analysis

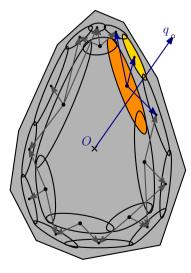
Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results Open Problems

References



- Out-degree: O(1)
- Query time per level: O(1)
- Number of levels: $O(\log \frac{1}{\varepsilon})$

Query time

- $O(\log \frac{1}{\varepsilon}) \leftarrow \text{optimal}$
- Storage for bottom level: $O(1/\varepsilon^{(d-1)/2})$
- Geometric progression of storage per level

Storage

• $O(1/\varepsilon^{(d-1)/2}) \leftarrow \text{optimal}$

Approximate Nearest (ANN) Neighbor Searching

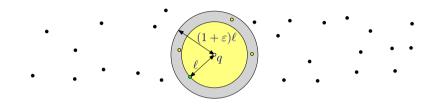
Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications

ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results Open Problems References



Approximate Nearest Neighbor

Preprocess n points such that, given a query point q, we can find a point within at most $1 + \varepsilon$ times the distance to q's nearest neighbor

- Applications to pattern recognition, machine learning, computer vision...
- Huge literature (theory, applications, heuristics...)

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications

ANN Reduction Tradeoff Kernel History Construction Diameter

- Exact nearest neighbor reduces to ray shooting
- Dimension increases by 1
- Each data point is lifted into a paraboloid
- Polyhedron defined by tangent hyperplanes
- Query: vertical ray shooting

Introduction Motivation Definition Previous

Data Struct.

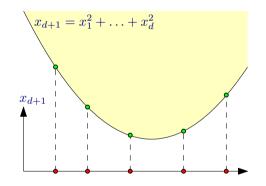
Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications

ANN Reduction Tradeoff

- Kernel
- History Construction
- Diameter

- Exact nearest neighbor reduces to ray shooting
 - Dimension increases by 1
 - Each data point is lifted into a paraboloid
 - Polyhedron defined by tangent hyperplanes
 - Query: vertical ray shooting



Introduction Motivation Definition Previous

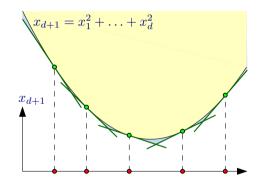
Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications

ANN Reduction Tradeoff Kernel History Construction Diameter

- Exact nearest neighbor reduces to ray shooting
- Dimension increases by 1
- Each data point is lifted into a paraboloid
- Polyhedron defined by tangent hyperplanes
- Query: vertical ray shooting



Introduction Motivation Definition Previous

Data Struct.

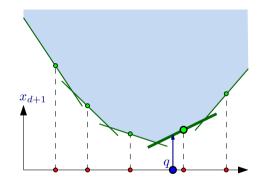
Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications

ANN Reduction

- Tradeoff Kernel History Construction Diameter
- Conclusions Results Open Problems References

- Exact nearest neighbor reduces to ray shooting
 - \blacksquare Dimension increases by 1
 - Each data point is lifted into a paraboloid
 - Polyhedron defined by tangent hyperplanes
 - Query: vertical ray shooting



Reduction to Approximate Polytope Membership [AFM18]

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications

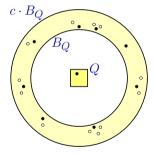
- ANN Reduction
- Tradeoff
- History
- History
- Diameter

Conclusions Results Open Problems References

Polyhedron is unbounded

Unbounded approximation error

- Solution: separation
- Partition space into cells such that: [AMM09]
 - Each cell Q is associated with candidates to be the ANN for query points in Q
 - Total number of candidates is O(n)
 - All but 1 candidate are inside a constant-radius annulus

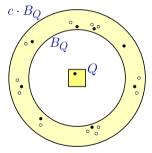


Reduction to Approximate Polytope Membership [AFM18]

Introduction Motivation Definition Previous

- Data Struct.
- Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis
- Applications
- ANN
- Reduction Tradeoff Kernel
- History Construction
- Diameter

- Polyhedron is unbounded
- Unbounded approximation error
- Solution: separation
- Partition space into cells such that: [AMM09]
 - Each cell Q is associated with candidates to be the ANN for query points in Q
 - Total number of candidates is $\widetilde{O}(n)$
 - All but 1 candidate are inside a constant-radius annulus



Reduction

Introduction Motivation Definition Previous

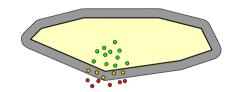
Data Struct.

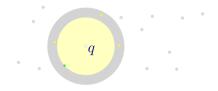
Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction

- Tradeoff Kernel History
- Construction
- Diameter

Conclusions Results Open Problems References





Given APM

- d+1 dimensions
- Query time: at most t
- Storage: *s*
- Preprocessing: $O(n \log \frac{1}{\epsilon} + b)$
- t, s, b: functions of ε

Resulting ANN

- *d* dimensions
- **Query time**: $O(\log n + t \cdot \log \frac{1}{\varepsilon})$
- Storage: $O(n \log \frac{1}{\varepsilon} + n \cdot s/t)$
- Preprocessing: $O(n \log n \log \frac{1}{\varepsilon} + n \cdot b/t)$

Reduction

Introduction Motivation Definition Previous

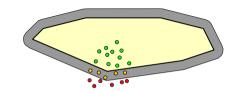
Data Struct.

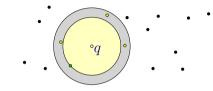
Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction

- Tradeoff Kernel
- History
- Construction
- Diameter

Conclusions Results Open Problems References





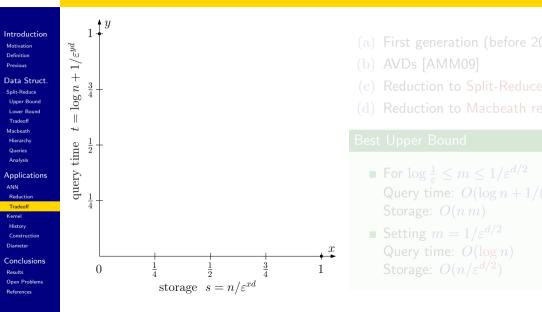
Given APM

- d+1 dimensions
- Query time: at most t
- Storage: *s*
- Preprocessing: $O(n \log \frac{1}{\varepsilon} + b)$
- t, s, b: functions of ε

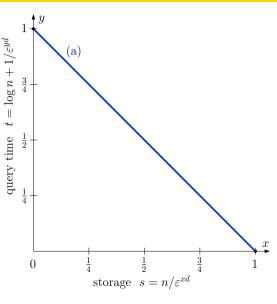
Resulting ANN

- *d* dimensions
- Query time: $O(\log n + t \cdot \log \frac{1}{\varepsilon})$
- Storage: $O(n \log \frac{1}{\varepsilon} + n \cdot s/t)$
- Preprocessing: $O(n \log n \log \frac{1}{\varepsilon} + n \cdot b/t)$

Space-Time Tradeoffs for ANN



Space-Time Tradeoffs for ANN



- (a) First generation (before 2002)
- (b) AVDs [AMM09]
- $(c)\ \mbox{Reduction to Split-Reduce}$
- (d) Reduction to Macbeath regions

Best Upper Bound

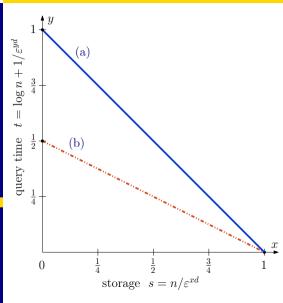
- For $\log \frac{1}{\varepsilon} \le m \le 1/\varepsilon^{d/2}$ Query time: $O(\log n + 1/(m \varepsilon^{d/2}))$ Storage: O(n m)
- Setting m = 1/ε^{d/2}
 Query time: O(log n)
 Storage: O(n/ε^{d/2})

Space-Time Tradeoffs for ANN

Introduction Motivation Definition Previous Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results Open Problems References



- (a) First generation (before 2002)(b) AVDs [AMM09]
- (c) Reduction to Split-Reduce
- $\left(d \right)$ Reduction to Macbeath regions

Best Upper Bound

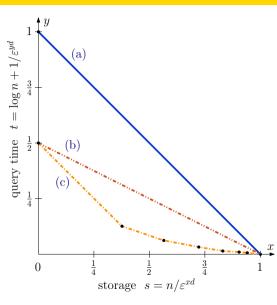
- For $\log \frac{1}{\varepsilon} \le m \le 1/\varepsilon^{d/2}$ Query time: $O(\log n + 1/(m \varepsilon^{d/2}))$ Storage: O(n m)
- Setting m = 1/ε^{d/2}
 Query time: O(log n)
 Storage: O(n/ε^{d/2})

Space-Time Tradeoffs for ANN

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results Open Problems

References



- (a) First generation (before 2002)
- (b) AVDs [AMM09]
- (c) Reduction to Split-Reduce
- (d) Reduction to Macbeath regions

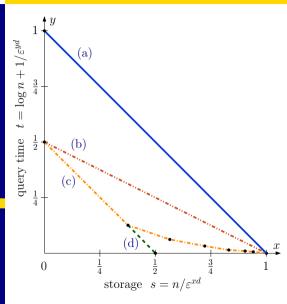
Best Upper Bound

- For $\log \frac{1}{\varepsilon} \le m \le 1/\varepsilon^{d/2}$ Query time: $O(\log n + 1/(m \varepsilon^{d/2}))$ Storage: O(n m)
- Setting m = 1/ε^{d/2}
 Query time: O(log n)
 Storage: O(n/ε^{d/2})

Space-Time Tradeoffs for ANN

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff History Construction Diameter Conclusions Results Open Problems



- (a) First generation (before 2002)
- (b) AVDs [AMM09]
- (c) Reduction to Split-Reduce
- (d) Reduction to Macbeath regions

Best Upper Bound

- For $\log \frac{1}{\varepsilon} \le m \le 1/\varepsilon^{d/2}$ Query time: $O(\log n + 1/(m \varepsilon^{d/2}))$ Storage: O(n m)
- Setting $m = 1/\varepsilon^{d/2}$ Query time: $O(\log n)$ Storage: $O(n/\varepsilon^{d/2})$

Directional Width

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results

Open Problems References

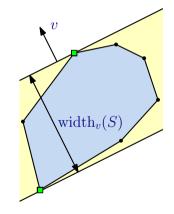
Directional width

Given:

- S: set of n points in \mathbb{R}^d
- *v*: unit vector

Define width $_v(S)$:

 Minimum distance between two hypeplanes orthogonal to v enclosing S



ε -Kernel

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results Open Problems

References

Input

S: Set of n points in \mathbb{R}^d

 $\varepsilon > 0$: Approximation parameter

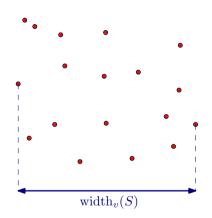
utput

 $Q\subseteq S$ such that for all vector v,

width_v(Q) $\ge (1 - \varepsilon)$ width_v(S)

nd $|Q| = O(1/\varepsilon^{(d-1)/2})$

■ Approximation of the convex hull
 ■ Minimum size: Θ(1/ε^{(d-1)/2})



ε -Kernel

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results

Open Problems References

Input

S: Set of n points in \mathbb{R}^d

 $\varepsilon > 0$: Approximation parameter

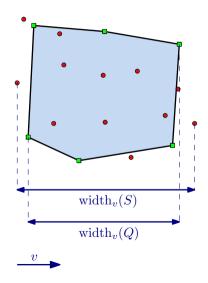
Output

 $Q \subseteq S$ such that for all vector v,

width_v(Q) $\geq (1 - \varepsilon)$ width_v(S)

and $|Q| = O(1/\varepsilon^{(d-1)/2})$

Approximation of the convex hull
 Minimum size: Θ(1/ε^{(d-1)/2})



Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

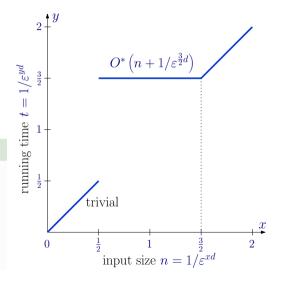
• [AHV04] $O\left(n+1/\varepsilon^{\frac{3(d-1)}{2}}\right)$

- [Cha06] $O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{d-2}\right)$
- [ArC14] $O\left(n + \sqrt{n}/\varepsilon^{\frac{d}{2}}\right)$ • [Cha17] $\widetilde{O}\left(n\sqrt{\frac{1}{\varepsilon}} + 1/\varepsilon^{\frac{d-1}{2} + \frac{3}{2}}\right)$

Our near-optimal constructior

$$O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2} + \alpha}\right)$$

- $\alpha > 0$ arbitrarily small
- Independent of [Cha17] and completely different technique



Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

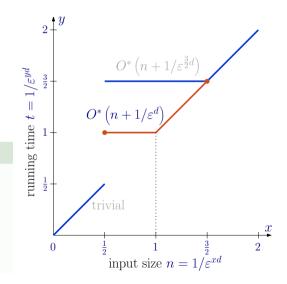
Conclusions Results Open Problems References

- [AHV04] $O\left(n+1/\varepsilon^{\frac{3(d-1)}{2}}\right)$
- [Cha06] $O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{d-2}\right)$
- [ArC14] $O\left(n + \sqrt{n}/\varepsilon^{\frac{d}{2}}\right)$ • [Cha17] $\widetilde{O}\left(n\sqrt{\frac{1}{\varepsilon}} + 1/\varepsilon^{\frac{d-1}{2} + \frac{3}{2}}\right)$

Our near-optimal construction

$$O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2} + \alpha}\right)$$

- $\alpha > 0$ arbitrarily small
- Independent of [Cha17] and completely different technique



Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

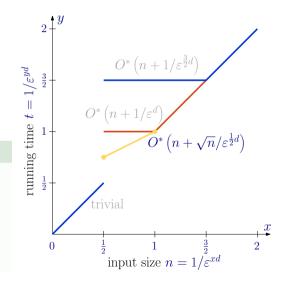
Conclusions Results Open Problems References

- [AHV04] $O\left(n+1/\varepsilon^{\frac{3(d-1)}{2}}\right)$ • [Cha06] $O\left(n\log\frac{1}{\varepsilon}+1/\varepsilon^{d-2}\right)$
- [ArC14] $O\left(n + \sqrt{n}/\varepsilon^{\frac{d}{2}}\right)$
- [Cha17] $\widetilde{O}\left(n\sqrt{\frac{1}{\varepsilon}}+1/\varepsilon^{\frac{d-1}{2}+\frac{3}{2}}\right)$

Our near-optimal construction

$$\bullet O\left(n\log \frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2} + \alpha}\right)$$

- $\alpha > 0$ arbitrarily small
- Independent of [Cha17] and completely different technique



Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction

Diameter

Conclusions Results Open Problems References

• [AHV04] $O\left(n+1/\varepsilon^{\frac{3(d-1)}{2}}\right)$

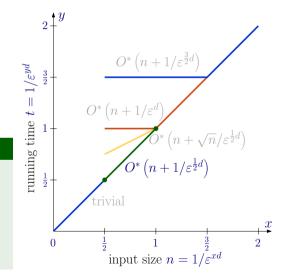
- [Cha06] $O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{d-2}\right)$
- [ArC14] $O\left(n + \sqrt{n}/\varepsilon^{\frac{d}{2}}\right)$

• [Cha17]
$$\widetilde{O}\left(n\sqrt{\frac{1}{\varepsilon}}+1/\varepsilon^{\frac{d-1}{2}+\frac{3}{2}}\right)$$

Our near-optimal construction

•
$$O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$$

- $\alpha > 0$ arbitrarily small
- Independent of [Cha17] and completely different technique



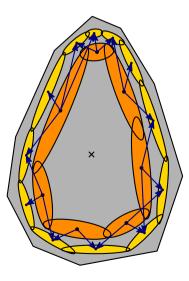
Hierarchy of Macbeath Ellipsoids

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions

Results Open Problems References



- Hierarchy construction takes: $O\left(n+1/\varepsilon^{\frac{3(d-1)}{2}}\right)$ time
- Input polytope may be described as:
 - Intersection of n halfspaces
 - Convex hull of n points
- **Too slow** to efficiently build ε -kernel

Hierarchy Properties

Introduction Motivation Definition Previous

Data Struct.

- Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy
- Queries Analysis

Applications ANN Reduction Tradeoff Kernel

- History Construction
- Diameter

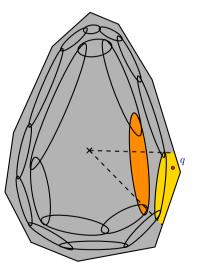
Conclusions Results Open Problems References

• Query point $q \in K$:

- Find leaf shadow that contains q
- Or report q as far from the boundary
- $O(\log \frac{1}{\varepsilon})$ time

• Hierarchy \longrightarrow Kernel

- Split points among leaf shadows
- Pick one point per leaf shadow
 - (if there's one)
- $O(n \log \frac{1}{\varepsilon})$ time



Hierarchy Properties

Introduction Motivation Definition Previous

Data Struct.

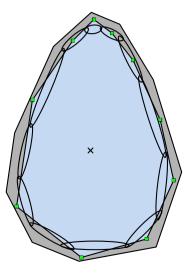
- Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy
- Queries Analysis

Applications ANN Reduction Tradeoff

- Kernel
- History
- Construction
- Diameter

Conclusions Results Open Problems References

- Query point $q \in K$:
 - Find leaf shadow that contains q
 - Or report q as far from the boundary
 - $O(\log \frac{1}{\varepsilon})$ time
- $\blacksquare Hierarchy \longrightarrow Kernel$
 - Split points among leaf shadows
 - Pick one point per leaf shadow
 - (if there's one)
 - $O(n \log \frac{1}{\varepsilon})$ time



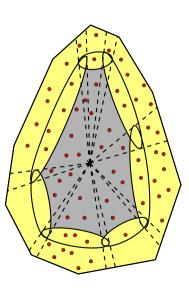
Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References



1 Build hierarchy for $\delta = \varepsilon^{1/3}$: $O\left(n+1/\delta^{\frac{3(d-1)}{2}}\right) = O\left(n+1/\varepsilon^{\frac{d-1}{2}}\right)$ time

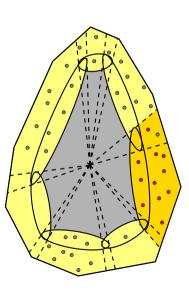
Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References



1 Build hierarchy for $\delta = \varepsilon^{1/3}$: $O\left(n+1/\delta^{\frac{3(d-1)}{2}}\right)=O\left(n+1/\varepsilon^{\frac{d-1}{2}}\right)$ time **2** Split points among shadows: $O(n \log \frac{1}{c})$ time

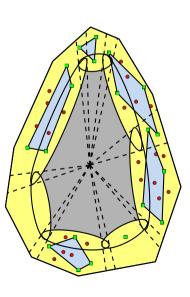
Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References



1 Build hierarchy for $\delta = \varepsilon^{1/3}$: $O\left(n+1/\delta^{\frac{3(d-1)}{2}}\right) = O\left(n+1/\varepsilon^{\frac{d-1}{2}}\right)$ time **2** Split points among shadows: $O(n \log \frac{1}{c})$ time **3** Build $\frac{\varepsilon}{s}$ -kernel for each shadow (using existing $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{d-1})$ algorithm) $O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\delta}\right)^{\frac{d-1}{2}} \left(\frac{\delta}{\varepsilon}\right)^{d-1}\right) =$ $O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{\frac{5(d-1)}{6}}\right)$

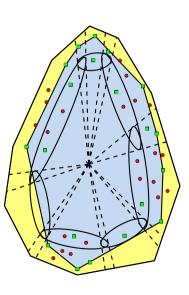
Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References



1 Build hierarchy for $\delta = \varepsilon^{1/3}$: $O\left(n+1/\delta^{\frac{3(d-1)}{2}}\right) = O\left(n+1/\varepsilon^{\frac{d-1}{2}}\right)$ time **2** Split points among shadows: $O(n \log \frac{1}{c})$ time **3** Build $\frac{\varepsilon}{s}$ -kernel for each shadow (using existing $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{d-1})$ algorithm) $O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\delta}\right)^{\frac{d-1}{2}} \left(\frac{\delta}{\varepsilon}\right)^{d-1}\right) =$ $O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{\frac{5(d-1)}{6}}\right)$ Return union of kernels

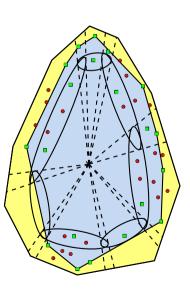
Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions

Results Open Problems References



1 Build hierarchy for $\delta = \varepsilon^{1/3}$: $O\left(n+1/\delta^{\frac{3(d-1)}{2}}\right) = O\left(n+1/\varepsilon^{\frac{d-1}{2}}\right)$ time **2** Split points among shadows: $O(n \log \frac{1}{c})$ time **3** Build $\frac{\varepsilon}{s}$ -kernel for each shadow (using existing $O(n \log \frac{1}{\epsilon} + 1/\epsilon^{d-1})$ algorithm) $O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\delta}\right)^{\frac{d-1}{2}} \left(\frac{\delta}{\varepsilon}\right)^{d-1}\right) =$ $O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{\frac{5(d-1)}{6}}\right)$ Return union of kernels Time: $O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{5(d-1)}{6}}\right)$ Kernel size: $O\left(\left(\frac{1}{\delta}\right)^{\frac{d-1}{2}}\left(\frac{\delta}{\varepsilon}\right)^{\frac{d-1}{2}}\right) = O\left(1/\varepsilon^{\frac{d-1}{2}}\right)$

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

Bootstrap using improved ε -kernel construction:

$$\begin{array}{l} \bullet \ O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{t(d-1)}\right) \text{ time } \longrightarrow O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{\frac{4t+1}{6}(d-1)}\right) \text{ time } \\ \bullet \ t: \ 1 \longrightarrow \frac{5}{6} \longrightarrow \frac{13}{18} \longrightarrow \frac{35}{54} \longrightarrow \cdots \longrightarrow \frac{1}{2} + \alpha \\ \bullet \ \text{Exponent } t \text{ arbitrarily close to } \frac{1}{2} \end{array}$$

lunning Time

 $n\lograc{1}{arepsilon}+1/arepsilon^{rac{d-1}{2}+lpha}
ight)$, for arbitrarily small lpha>0

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

Bootstrap using improved ε -kernel construction:

•
$$O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{t(d-1)}\right)$$
 time $\longrightarrow O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{\frac{4t+1}{6}(d-1)}\right)$ time
• $t: 1 \longrightarrow \frac{5}{6} \longrightarrow \frac{13}{18} \longrightarrow \frac{35}{54} \longrightarrow \cdots \longrightarrow \frac{1}{2} + \alpha$
• Exponent t arbitrarily close to $\frac{1}{2}$

Running Time

 $n\lograc{1}{arepsilon}+1/arepsilon^{rac{d-1}{2}+lpha}
ight)$, for arbitrarily small lpha>0

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

Bootstrap using improved ε -kernel construction:

$$\begin{array}{l} \bullet \ O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{t(d-1)}\right) \text{ time } \longrightarrow O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{\frac{4t+1}{6}(d-1)}\right) \text{ time } \\ \bullet \ t: \ 1 \longrightarrow \frac{5}{6} \longrightarrow \frac{13}{18} \longrightarrow \frac{35}{54} \longrightarrow \cdots \longrightarrow \frac{1}{2} + \alpha \\ \bullet \ \text{Exponent } t \text{ arbitrarily close to } \frac{1}{2} \end{array}$$

Running Time

 $n\lograc{1}{arepsilon}+1/arepsilon^{rac{d-1}{2}+lpha}
ight)$, for arbitrarily small lpha>0

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

Bootstrap using improved ε -kernel construction:

- $O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{t(d-1)}\right)$ time $\longrightarrow O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{\frac{4t+1}{6}(d-1)}\right)$ time • $t: 1 \longrightarrow \frac{5}{6} \longrightarrow \frac{13}{18} \longrightarrow \frac{35}{54} \longrightarrow \cdots \longrightarrow \frac{1}{2} + \alpha$
- **Exponent** t arbitrarily close to $\frac{1}{2}$

Running Time

Preprocessing Approximate Polytope Membership

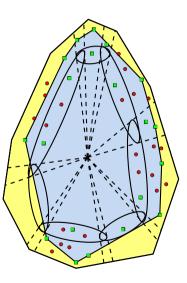
Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References



 Same strategy to efficiently preprocess an approximate polytope membership data structure

Approximate Polytope Membership

- Query time: $O(\log \frac{1}{\varepsilon}) \leftarrow \text{optimal}$
- Storage: $O(1/\varepsilon^{\frac{d-1}{2}}) \leftarrow \text{optimal}$
- Preprocessing: $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2} + \alpha})$ \uparrow almost optimal

Approximate Diameter [AFM17b]

Introduction Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analvsis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

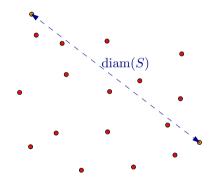
Input

- S: Set of n points in \mathbb{R}^d
- $\varepsilon > 0$: Approximation parameter

Dutput

 $p,q\in S$ witl

 $\|pq\| \ge (1-\varepsilon) \operatorname{diam}(S)$



Approximate Diameter [AFM17b]

Introduction Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analvsis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

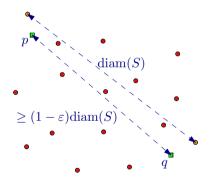
Input

- S: Set of n points in \mathbb{R}^d
- $\varepsilon > 0$: Approximation parameter

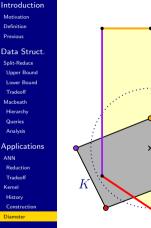
Output

 $p,q\in S$ with

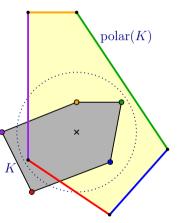
 $||pq|| \ge (1-\varepsilon) \operatorname{diam}(S)$



Polarity



Conclusions Results Open Problems References



- *K*: convex body
- Polar of K:

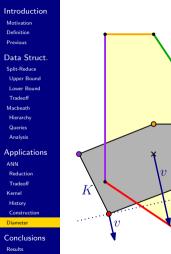
points p such that $p\cdot q\leq 1$ for $q\in K$

- In K: extreme point in direction v
- In polar(K): ray shooting in direction v from origin

Polarity

 $\operatorname{polar}(K)$

.....



Open Problems References

- *K*: convex body
- Polar of *K*:

points p such that $p\cdot q\leq 1$ for $q\in K$

- In K: extreme point in direction v
- In polar(K): ray shooting in direction v from origin

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

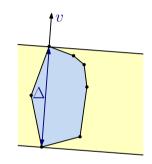
Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

• Diameter: $\max_v \operatorname{width}_v(K)$

- Diameter: Approximated using $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries [Cha02
- **1** Preprocess $\operatorname{polar}(K)$ for ray shooting
- 2 Perform $O(1/arepsilon^{rac{d-1}{2}})$ directional width queries on K
- 3 Return maximum width found

Running Time



Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

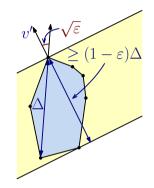
Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

Diameter: $\max_v \operatorname{width}_v(K)$

- **Diameter**: Approximated using $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries [Cha02]
- **1** Preprocess $\operatorname{polar}(K)$ for ray shooting
- Perform $O(1/arepsilon^{rac{d-1}{2}})$ directional width queries on K
- Return maximum width found

Running Time



Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

Diameter: $\max_v \operatorname{width}_v(K)$

- **Diameter**: Approximated using $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries [Cha02]
- **1** Preprocess polar(K) for ray shooting

2 Perform $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries on K

$v' \sqrt{\varepsilon} \ge (1 - \varepsilon)\Delta$

Running Time

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

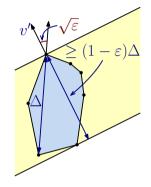
Conclusions Results Open Problems References

Diameter: $\max_v \operatorname{width}_v(K)$

- **Diameter**: Approximated using $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries [Cha02]
- **1** Preprocess polar(K) for ray shooting
- 2 Perform $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries on K

B Return maximum width found

Running Time



Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

• Diameter: $\max_v \operatorname{width}_v(K)$

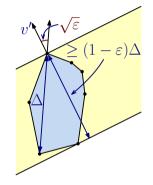
- **Diameter**: Approximated using $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries [Cha02]
- **1** Preprocess polar(K) for ray shooting
- 2 Perform $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries on K
- 3 Return maximum width found

Running Time

 $\left(n\log\frac{1}{2}\right)$

O

$$(1+1/arepsilon rac{d-1}{2}+lpha)$$
, for arbitrarily small $lpha>0$



Results

Introduction Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

Our approximate polytope membership data structure is optimal

- Query time: $O(\log \frac{1}{\varepsilon})$
- Storage: $O(1/\varepsilon^{\frac{d-1}{2}})$
- Preprocessing: $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2} + \alpha})$

We showed how to use it to obtain:

- ANN searching in $O(\log n)$ query time with $O(n/\varepsilon^{d/2})$ storage
- Near-optimal ε -kernel construction in $O\left(n\log \frac{1}{\varepsilon} + 1/\varepsilon \frac{d-1}{2} + \alpha\right)$ time
- Diameter approximation in $O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$ time
- Bichromatic closest pair approximation in $O\left(n/\varepsilon^{\frac{d}{4}+\alpha}\right)$ expected time

Euclidean minimum spanning/bottleneck tree approximation in $O\left((n\log n)/\varepsilon^{\frac{d}{4}+\alpha}\right)$ expected time

Results

Introduction Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results Open Problems References

Our approximate polytope membership data structure is optimal

- Query time: $O(\log \frac{1}{\varepsilon})$
- Storage: $O(1/\varepsilon^{\frac{d-1}{2}})$
- Preprocessing: $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2} + \alpha})$

We showed how to use it to obtain:

- ANN searching in $O(\log n)$ query time with $O(n/\varepsilon^{d/2})$ storage
- Near-optimal ε -kernel construction in $O\left(n\log \frac{1}{\varepsilon} + 1/\varepsilon \frac{d-1}{2} + \alpha\right)$ time
- Diameter approximation in $O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$ time
- Bichromatic closest pair approximation in $O\left(n/\varepsilon^{\frac{d}{4}+\alpha}\right)$ expected time
- Euclidean minimum spanning/bottleneck tree approximation in $O\left((n\log n)/\varepsilon^{\frac{d}{4}+\alpha}\right)$ expected time

Open Problems

Introduction Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results

Open Problems References

- Still, several open problems remain
 - Faster preprocessing
 - Further improvements to approximate nearest neighbor searching
 - Generalization to *k*-nearest neighbors
 - Lower bound for diameter (or improved upper bound)
 - Diameter for non-Euclidean metrics
 - Other applications of the hierarchy

Ongoing work:

- Approximate the width
- Approximate polytope intersection
- ANN with non-Euclidean metrics

References

- Introduction Motivation Definition Previous
- Data Struct.
- Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Oueries
- Analysis
- Applications
- ANN Reduction
- Tradeoff
- Kernel
- History
- Construction
- Diameter
- Conclusions Results Open Problems
- References

- [AHV04] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of points. J. Assoc. Comput. Mach., 51:606–635, 2004.
 - [ArC14] S. Arya and T. M. Chan. Better ε-dependencies for offline approximate nearest neighbor search, Euclidean minimum spanning trees, and ε-kernels. In Proc. 30th Sympos. Comput. Geom., pages 416–425, 2014.
- [AFM17a] S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal approximate polytope membership. In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 270–288, 2017.
- [AFM17b] S. Arya, G. D. da Fonseca, and D. M. Mount. Near-optimal ε-kernel construction and related problems. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 10:1–15, 2017.
- [AFM17c] S. Arya, G. D. da Fonseca, and D. M. Mount. On the combinatorial complexity of approximating polytopes. Discrete Comput. Geom., 58(4):849–870, 2017.
- [AFM18] S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries. SIAM J. Comput., 47(1):1-51, 2018.
- [AMM09] S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate nearest neighbor searching. J. Assoc. Comput. Mach., 57:1–54, 2009.
- [Bar07] I. Bárány. Random polytopes, convex bodies, and approximation. In W. Weil, editor, Stochastic Geometry, volume 1892 of Lecture Notes in Mathematics, pages 77–118, 2007.
- [Cha02] T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. Internat. J. Comput. Geom. Appl., 12:67–85, 2002.
- [Cha06] T. M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions. Comput. Geom. Theory Appl., 35(1):20–35, 2006.
- [Cha17] T. M. Chan. Applications of Chebyshev polynomials to low-dimensional computational geometry. In Proc. 33rd Internat. Sympos. Comput. Geom., 2017.
- [Dud74] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. Approx. Theory, 10(3):227-236, 1974.
- [Joh48] F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to R. Courant on his 60th Birthday, pages 187–204, 1948.
- [Mac52] A. M. Macbeath. A theorem on non-homogeneous lattices. Annals of Mathematics, 54:431-438, 1952.

Introduction Motivation Definition Previous

Data Struct.

Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results Open Problems

References

Painting by Robert Delaunay

Thank you!